Skip to main content

Simpleceiver ~ Part 14

More of the Bits & Pieces

 
This will be a short posting to provide more information and give rise to other possible configurations. Previously we mentioned about the hard core homebrewer's who did not consider this a homebrew project unless it was totally homebrew. To that end, today, I hooked a 5 MHz LC VFO I had that was left over from a prior project wherein it was replaced with a Si5351. In further response to the hard core group, in the future I will present a design for a crystal switched VXO so that segments of the 40 Meter band can be covered using the VXO. But for now here is the LC VFO video. Note how quiet the receiver is between stations and also note I prototyped a 4 pole crystal filter that is "haywired" into the circuit.
 
 
 
 
In the most recent SolderSmoke Podcast #182 (11/20/2015) I mentioned to my friend and host Bill N2CQR about the power of the LT Spice simulations that were being used with this project and now I would like to expand a bit more on what was said.
 
In retrospect I am guilty of just trying things and then at times are a bit surprised when an expected performance level is on the short side. Below is the 12 MHz IF amplifier circuits that will be used in conjunction with the new 4 pole Crystal Filter. The current configuration is set to use 12 Volts to power the circuit. But I wanted to explore what happened at lower voltage levels. So OK I was toying with a spin off project called the Cellceiver. I have a big box of defunct mobile phones and in that box are a large number of still good rechargeable batteries. So the idea was to build a Simpleceiver powered from 3.8 Volts. Also important is the situation where you don't have +12 VDC and you grab a 9 VDC transistor radio battery thinking "this will work OK". Well maybe not. [Note in the schematic below the top margin got cut off but the top end of 68K gets connected to the +12VDC Rail.]
 
 
 
 
Now what happens if you change the Supply voltage [Going from +12 VDC down to + 5 VDC]?
This is amazing! As you drop the supply voltage from 12 VDC to 5 VDC, the gain drops by 2/3 from 18 dB to about 6.5 dB which is a dramatic reduction. Dropping to 9 VDC drops the gain by 4 dB thus if the circuit calls for 12 VDC then that is what it needs!
 
Take a look at the tank circuit and note that there is a capacitive voltage divider, C1 and C2. The equivalent series capacitance across the tank is about 23.5 PF. If you were to connect a 23.5 PF cap in series with a 10 NF that essentially is a 23.5 Capacitor. Run the simulation and look at the output level. Try putting the 23.5 PF cap on top and the 10 NF on the bottom and run the simulation. Then reverse the two with the 23.5 PF cap on top and the 10 NF on the bottom. Note the gain readings. You can draw some very important conclusions from this --which I will leave to the reader. Hint: Size and order matters!
 
Pete N6QW

 
 


Popular posts from this blog

January 26, 2024. A simple CW Transceiver/Transmitter

Cruise through the lower part of the ham bands bands and what do you hear? Well, FT-8 and CW. Often you will not hear any SSB stations yet go to the lower part of the bands, and it is a cacophony (I love that word) of bad sounding signals and some high-speed keying. Fast is not so much of the issue as is bad, run together and jerky keying. But none the less our hobby started there.    So, you could crank down your ICOM 7300 and watch the waterfall on CW or you could homebrew a radio. Actually, to do CW right you need more thought up front than you do with a SSB transceiver. Often, I will state that a CW Transceiver is much more difficult to build than a simple SSB rig. I published two articles in QRP Quarterly on CW transceivers and all I got was a yawn so maybe history will repeat itself.  Yawn!   30M CW Transceiver with RIT!   Of interest is that the LO is a Varactor tuned LC oscillator using a NE602. Look closely at the RIT circuit which is only activated on ...

March 31, 2024. Happy Easter to those who celebrate this day.

What a great day to Binge on Chocolate and experience the pain of that filling that has been leaking.  I would be in that category with the leaking filling(s) had I not just spent an amount equivalent to one of the fancy new uptown appliance box transceivers on two filling repairs. Well at least I can binge on the Chocolate bunnies without fear of pain. Regrettably everything appears to have jumped in price including the price of parts. Well not so much the parts as the shipping costs.  That notably is seen in the eBay treasures. I spotted a nice heathkit DX-20 for about $50 and the shipping was $65. Likely it is a twofer with part being a way to in effect charge a higher price by inflating the shipping and in part by increased shipping costs. Shipping with insurance across the US was about $150 for this jewel and that was three years ago. 6AM on the Left Coast ~ 20M Easter Sunday! My only hope is the cost of Chocolate Bunnies remains steady although a pound of See's Candies f...

August 30, 2024. A PNP 20M SSB Transceiver

Shown below is the Block Diagram for the 20M PNP SSB Transceiver steered in the  Transmit Mode . The components shown in the dotted block are relay steered so that the block module is single pass and amplifies in a single direction. The Block diagram show steered in Transmit.  Essentially the steering process works so that the IF Module input follows the Balanced Modulator on Transmit and then the input side follows the Receive Mixer on Receive. All done with some relays and a bit of RG174U coax. For those who count things in detail, this block diagram is not unlike what was used for the PSSST Transceiver which can be found on my website . Yes, a warmed over P3ST only using PNP devices. TYGNYBNT. 73's Pete N6QW