Skip to main content

2018 ~ The Year of SSB Transceivers

Something for the SDR Crowd!


You too can build your own SDR Transceiver!

Second Generation Main Board


The board above is a second generation board and contains the two ADE-1 Detectors and the Modem coupling transformers, the divide by four 74AC74 and to be installed is the band pass filter. If you look close you can see the ferrite core balun used to split the signals going into the two detectors. This is a deliberate attempt at isolating signals and keeping things neat and tidy. I am thinking about a separate enclosure just for this board. Later today I will install the bandpass filter with the intent that it may be used at 9 MHz with a possibility of a different front end. You will have to stay tuned for this.

How about using the SDR on WSPR?





While I can claim I built this rig and added several modifications, by and large the credit goes to Charlie Morris ZL2CTM for his design and software development. You can follow ZL2CTM on YouTube and he has many videos and tutorials!

The bottom line is how your signal sounds AND LOOKS  at the other end. I am really surprised at the number of hams that use either an SDR rig in the shack or use an SDR receiver on the Web for the receiving end of things. Not too many are using a homebrew SDR! Thus it is not unusual to hear that my signal looks really good. To date I have made close to three dozen contacts including a 8000 mile DX QSO with a station in Australia --on 40 Meters. My usual set up is the rig followed by a 100+ watt Solid State Amp kit from CCI and then the Heathkit SB200. Based on my upgrade of the SB200 I typically see in excess of 600 Watts to the antenna. That is a smoking signal!

My 40M antenna is a droopy dipole and that means if I spent a bit more time on the antenna I would hear and work more stations. The center pole is up about 25 feet and the length is 98 feet 3/2 wavelengths on 20 Meters. It is in the shape of an L as it runs along the back end and one of the sides of the lot. The fiberglass support pole is strapped to the tree.



But let us start with the Block Diagram of the basic hardware. Beyond this I have a transmit Driver Stage with a 2N3904 and 2N3866 and the Final amplifier is a IRF510. The relay Switched J310's and the audio amplifier (2N3904 + LM386) are located on the main receiver board. One other item needed to make this play is another bit of hardware from PJRC and that is the sound isolator which I think is nothing more than a modem transformer sealed in a box. The Codec board needs to keep the DC and AC grounds isolated and this is what this device does. In line you hear the amazing SDR signals -- out of the circuit and straight through coupling --garbage!!!!!! It cost $6. One of my modifications was to add modem coupling transformers following the ADE-1's --again the same issue as with the sound isolator. You simply cannot ugly construct this rig and have expectations for success! You will note the date on the block diagram and you will realize this has been a year in the works.





 (R1 is for Simulation Purposes in LT Spice and not used in the final circuit)


The above circuit forms the basis of the driver stage and has been used on many transceiver projects. Ignore the notes and focus on just the 2N3904 and 2N3866 parts of the circuit.


This circuit is used for the Final RF amplifier stage on the SDR. Now a modification to this circuit to accept the Mitsubishi RDHF RF FET would include the replacing the Zener with the 78L05 three terminal regulator and inserting a LED in between the Ground pin of the 78L05 and Ground. which raises the output voltage > 6 VDC. A higher bias level  is needed for the RF FET. Typical output is 6 Watts but higher levels close to 10 watts may be experienced. All other circuit constants remain the same. this is an easy conversion. What is so cool about the LED -- when the circuit is biased "ON" the LED glows --more lights, bells and whistles.

Below are a couple of additional schematic circuits for the SDR Rig with the first being the steerable Dual J310 Amp stage. R3 is for simulation purposes and not used in the final build. R7 is as noted is a 10K trimpot connected as a variable resistor. Note the schematic shows the amp stage amplifying from left to right but the actual install has the amp stage direction going from right to left. I just know someone will install it backwards and then email that it doesn't work. RTM!








The Below sketch shows the modem transformer install.




Now you ask why would you do this when you can buy the IRF510 for about 80 cents and the RDHF is about $5. Well it all depends if you want to operate above 20 Meters. The power output drops off at higher frequencies with the IRF510. So it is all about choice of operating frequency.
Why even the microphone was homebrewed (a first for me). I bought this electret Lavalier style microphone from All Electronics. It is a superb microphone but somewhat costly -- about $1.15 with 15 foot cord. It does not have a PTT switch so I built the PTT using a microswitch I had in the junk box. Starting with a piece of scrap 2X4 about 6 inches long I milled out a cavity so I could mount the microphone and PTT. The remainder of the 2X4 was simply sawed off and ths is what was left. It is palm sized. See below. Aside from some splinters all went well. Not bad for some junk parts a piece of scrap wood and a $1.15 microphone. If you look closely you can see the PTT button sticking out of the case. Not very elegant but it works.
As of 8/11 I have had about 3 dozen contacts including one this morning with a VK station on 40M.

My homebrew Electret  Microphone: (This is one heck of a buy!)




Started like This...




This rig was built based on the design/software from Charlie Morris, ZL2CTM. This is a truly amazing rig as no external computer is required to make it play. While something more than an Arduino Uno R3 is required to make it work,  the Teensy 3.5 and the Audio Codec Board from PJRC will make it stand up tall. This is a $150 class rig but offers many possibilities for use on multiple bands or as I have on the drawing boards a hybrid Crystal Filter/SDR rig.





73's
Pete N6QW

Popular posts from this blog

2019 ~ What is the simplest homebrew SSB Transceiver that can be built?

4/27/2019 The Future of our Hobby is Here! Forget those simple rigs with homebrew crystal filters, cranky IRF510's and the analog VFO's. SDR is the wave that is building strength just like a Tsunami. With the Soft Rock V6.3 SMD Version + RRPi2 With the Omnia SDR and RPi2 Pete N6QW How Simple & How Cheap can you  build a Homebrew SSB Transceiver? 4/26/2019 --- I just converted my websites from an obsolete Windows Based Server with GoDaddy to their cPanel (Linux). This was a cost issue as a one year renewal of the Windows Server would buy three years on the cPanel. GoDaddy is discouraging the use of what they call the Obsolete Windows System. So I had to migrate and reload the whole pastapete.com, jessystems.com and the n6qw.com sites to the Linux based servers. Some files and links got lost in the translation --so you might not be able to see everything! Essentially I have  to open every link to verify that it works --that may take some time

New Technology for 2020 ~ The Hermes Lite 2.0 SDR Transceiver

  The Hermes Lite 2.0 SDR Transceiver. November 7th, 2020 ~ It's Settled! It is done! The stain of the Trump era is soon to be removed! Thanks to all who voted. The Voice of the People has been heard.  Congratulations to President Elect Biden and Vice President Elect Harris. Pete N6QW November 3rd, 2020 -- IT WAS THE MOUSE   We all know this is Dump Trump  Day. Go out and vote! It was the mouse! Back in 1999 I stupidly was one of the very first to purchase a Ten Tec Pegasus. Never buy the first batch of a new model.  Touted as the world's first computer controlled radio , actually I think the Kachina 505 was really the first. But the Pegasus was fraught with problems including a trip back to the Smokey Mountains. I was using an older Windows 95 machine to control the Pegasus and that may be a co-conspirator. Well after many calls to TT -- finally someone who has some smarts told me: Fix your station ground, Make all leads short and Buy stock in a ferrite bead company. I did all

The Next Project Updated 10/10/2022! The rubber has hit the pavement!

The Next Project... A 2022 Transceiver. 10/10/2022 My Apologies. It is with regret that I will be terminating any further work on this project. My caregiver duties have over time become a greater time sink and it is almost impossible to build something working only 10-15 minutes at a time spread out over a day. I apologize for not getting it from design ideas to complete hardware. Most likely I have built the last transceiver I will ever build. Thanks for riding along. My website https://www.n6qw.com/  has the pdf of the postings and I will leave this blog page as is. 73's Pete N6QW 10/05/2022 Still Alive! Regrettably my caregiver duties have overtaken any free time so not much progress. But I am hopeful yet this week I will cut at least one board. A PSA from N6QW.  Think of it like Mary Jo has a "crink" in her back and unable to get in the backseat of the 57 VW Beetle. A bit of a setback but not forever.  Seems like the hired caregiver had a small emergency and not able